1-(4-morpholinyl)-2-[[3-(2-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone is a complex organic molecule with a rather lengthy chemical name. It's often referred to by its simpler name, **TZT-101**, which is much easier to handle.
**What is TZT-101?**
TZT-101 is a **small molecule** with a unique chemical structure that makes it interesting for research purposes. It's a **selective agonist** of a specific protein called **α7 nicotinic acetylcholine receptor (α7nAChR)**.
**Why is TZT-101 important for research?**
* **α7nAChR: A Target for Brain Disorders:** α7nAChR is a crucial protein in the brain, playing a role in learning, memory, attention, and other cognitive functions. It's also implicated in various neurological disorders like Alzheimer's disease, Parkinson's disease, and schizophrenia.
* **Potential Therapeutic Benefits:** TZT-101's ability to specifically activate α7nAChR makes it a promising candidate for the development of drugs to treat these disorders.
* **Cognitive Enhancement:** Some research suggests that TZT-101 may enhance cognitive function in healthy individuals as well.
**Areas of Research:**
* **Alzheimer's disease:** TZT-101 has shown promise in preclinical studies for treating Alzheimer's disease, potentially improving memory and cognition.
* **Schizophrenia:** Studies are exploring TZT-101's potential as a treatment for cognitive impairments in schizophrenia.
* **Cognitive Enhancement:** Research is underway to evaluate TZT-101's ability to enhance cognitive performance in healthy individuals.
**Current Status:**
TZT-101 is still in the **early stages of research** and has not yet been approved for use in humans. However, its potential as a therapeutic agent for various brain disorders is under investigation.
**Important Note:** It's crucial to remember that TZT-101 is a research compound. It is **not a drug** and should not be taken without the supervision of a healthcare professional.
In summary, TZT-101 is a promising compound being studied for its potential to treat brain disorders and enhance cognitive function. Its unique ability to activate α7nAChR makes it a significant focus for research efforts.
ID Source | ID |
---|---|
PubMed CID | 5310265 |
CHEMBL ID | 1378819 |
CHEBI ID | 104969 |
Synonym |
---|
smr000018917 |
MLS000103825 |
CHEBI:104969 |
1-morpholin-4-yl-2-[(3-pyridin-2-yl-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)sulfanyl]ethanone |
AB00431153-04 |
1-morpholino-2-((3-(pyridin-2-yl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)thio)ethanone |
F1835-0126 |
868967-16-2 |
HMS2256C04 |
CHEMBL1378819 |
AKOS024612671 |
Q27182638 |
1-(4-morpholinyl)-2-[[3-(2-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone |
1-(morpholin-4-yl)-2-{[3-(pyridin-2-yl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]sulfanyl}ethan-1-one |
Class | Description |
---|---|
triazoles | An azole in which the five-membered heterocyclic aromatic skeleton contains three N atoms and two C atoms. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 112.2020 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Chain A, HADH2 protein | Homo sapiens (human) | Potency | 31.6228 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain B, HADH2 protein | Homo sapiens (human) | Potency | 31.6228 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 89.1251 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 35.4813 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 79.4328 | 0.1000 | 20.8793 | 79.4328 | AID588456 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 35.4813 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 12.5893 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 28.1838 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 89.1251 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0018 | 15.6638 | 39.8107 | AID894 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 14.1254 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
aryl hydrocarbon receptor nuclear translocator | Homo sapiens (human) | AC50 | 21.2600 | 0.1900 | 23.3694 | 115.5100 | AID651703 |
transforming acidic coiled-coil-containing protein 3 | Homo sapiens (human) | AC50 | 21.2600 | 0.1900 | 24.2333 | 115.5100 | AID651703 |
glycogen synthase kinase-3 alpha | Homo sapiens (human) | AC50 | 300.0000 | 0.0135 | 29.7434 | 171.7000 | AID463203 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |